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Abstract

Cancer molecular imaging is the noninvasive visualization of a process unique to or
altered in neoplasia, such as proliferation, glucose metabolism, and receptor
expression, which is relevant to patient management. Several molecular imaging
modalities are now available, including magnetic resonance, optical, and nuclear
imaging. Nuclear imaging, particularly using fluorine-18-fluorodeoxyglucose posi-
tron emission tomography, is widely used in the staging and response assessment of
multiple cancer types. However, at this writing, new nuclear medicine probes,
especially positron emission tomography tracers, are increasingly used or are being
investigated for cancer evaluation. This review focuses on these probes, their bio-
logic targets, and the applications or potential applications for their use in the
assessment of various neoplasms, including both probes available for commercial
use—such as somatostatin receptor ligands in neuroendocrine tumors, prostate-
specific membrane antigen ligands in prostate cancer, norepinephrine analogs in
neural crest tumors like neuroblastoma, and estrogen analogs in breast cancer—and
others in clinical development, such as fibroblast-activating protein inhibitors, C-X-
C chemokine receptor type 4 ligands, and monoclonal antibodies targeting receptor
tyrosine kinases, CD4-positive or CD8-positive tumor-infiltrating lymphocytes,
tumor-associated macrophages, and cancer stem cell biomarkers. These de-
velopments represent a major step toward the integration of molecular imaging as a
powerful tool in precision medicine, with an expectedly significant impact on patient

management and outcome.
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INTRODUCTION

Molecular imaging is the in vivo visualization, characterization, and
quantification of biologic processes at the cellular and molecular
levels, with specific probes assessing physiologic and pathologic
pathways. Cancer molecular imaging is the noninvasive visualization
of processes unique to or altered in neoplasia, such as proliferation,
glucose metabolism, and receptor expression, as well as the inter-
action of tumor cells with their microenvironment.

Available molecular imaging modalities include magnetic reso-
nance imaging (MRI) or magnetic resonance spectroscopy, entailing
contrast-mediated or target-mediated alteration of tissue behavior in
a magnetic field, hence influencing T2-weighted or T1-weighted
signals to reflect specific tissue biology.! Optical imaging is another
modality that relies on differences in fluorescence, absorption,
reflectance, or bioluminescence of tissue or targeting probes as the
source of imaging contrast. Optical imaging applications are largely
limited to animal studies, cancer research purposes, and, more
recently, image-guided surgery.?

At the forefront of cancer molecular imaging is positron emission
tomography (PET) and its hybrid imaging counterparts when fused
with computed tomography (CT) or MRI (PET/CT and PET/MRI). PET
uses positron-emitting radionuclides, such as fluorine-18 (*8F) and
gallium-68 (°8Ga). These radionuclides are used to label large
numbers of biologic probes or biomolecules to form compounds
known as radioligands or radiotracers. Unlike MRI and optical im-
aging, PET/CT and, to a lesser extent, PET/MRI are more widely used
clinically for cancer molecular imaging, encompassing multiple clin-
ical applications, such as ®F-fluorodeoxyglucose (FDG) PET (FDG
PET).?

This review focuses on diagnostic PET-based molecular imaging
approaches beyond FDG PET that are becoming increasingly
important in the contemporary evaluation of cancer, such as
prostate-specific membrane antigen (PSMA) imaging in prostate
cancer. This development is a reflection of the overall shift in para-
digm from a one-size-fits-all approach to patient-tailored precision
medicine. Upcoming molecular probes with a promising role in cancer
molecular imaging are also discussed, including those targeting the
tumor microenvironment (TME). This review does not cover the
myriad applications of FDG PET, which have been discussed in depth

elsewhere, or the role of theranostics in clinical cancer care.

CANCER PET-BASED MOLECULAR IMAGING
APPROACHES BEYOND FDG BY THEIR BIOLOGIC
TARGET: THE ESTABLISHED PROBES

Over the years, numerous non-FDG nuclear molecular imaging ap-
proaches for cancer imaging have been investigated, each of them
characterized by their unique biologic targets and clinical settings.
Table 1 summarizes the most relevant targets, their radiotracers, and

current or potential applications.®~¢

Receptor or antigen expression-based imaging
Somatostatin receptor-based imaging

Somatostatin receptors (SSTRs) regulate the proliferation and
secretory function of primarily neuroendocrine cells and typically
show increased expression in well differentiated neuroendocrine
tumors (NETs; grade 1, 2, and 3 with a Ki-67 proliferation index of
<3%, 3%-20%, and >20%, respectively) arising from the neural crest.
These include carcinoid, pituitary tumors, paraganglioma, pheochro-
mocytoma, medullary thyroid carcinoma, neuroblastoma, and small
cell lung cancer. SSTRs are also expressed in other neoplasms, such as
meningioma and lymphoma. There are five different SSTR subtypes
expressed to varying degrees in the various neoplasms.*’

PET tracers in the form of °®Ga and copper-64 (4*Cu) dodecane
tetraacetic acid (DOTA)-labeled somatostatin analogs have become
the mainstay for molecular imaging of SSTR-positive tumors.® Widely
available SSTR PET ligands are SSTR agonists, which include %Ga-
DOTA-octerotide (®®Ga-DOTATOC), “®Ga-DOTA-octreotate (*®Ga-
DOTATATE), and ®*Cu-DOTATATE. SSTR tracer antagonists are
under development, including %8Ga-labeled and '8F-labeled JR11,
LM3, and LM4 (Figure 1), which have been shown to outperform
68Ga-agonists.'®1? Head-to-head comparison studies of different
SSTR agonistic and antagonistic tracers have demonstrated signifi-
cantly better diagnostic performance of antagonists for NETSs, pri-
marily because of lower background tracer uptake and a higher
target-to-background ratio.'®° For instance, Viswanathan et al.
demonstrated that, in 50 patients with gastroenteropancreatic NETs,
PET/CT with the SSTR antagonist ®®Ga-labeled DATAS5m-LM4
identified significantly more metastatic lesions (94.28%) versus PET/
CT with the SSTR agonist ¢8Ga-DOTA-1-Nal(3)-octerotide (¢®Ga-
DOTANOC; 83.46%; p < .0001), and the authors reported pooled
sensitivities for the staging and restaging settings.'? ¢®Ga-DATA5m-
LM4 was particularly more sensitive than ¢8Ga-DOTANOC in the
liver (100% vs. 89.4%, respectively; p < 0.0001) and bones (100% vs.
82.9%, respectively; p = .005).*°

In the context of well differentiated NETs, SSTR PET (using either
combined PET/CT or PET/MRI systems) significantly enhances diag-
nostic accuracy when combined with conventional imaging over con-
ventional imaging alone.? It also helps locate the origin of metastatic
NETs when the primary tumor is undetectable through standard im-
aging.>?! For example, a meta-analysis by Graham et al. indicated that,
when using ®®Ga-DOTATOC for NETSs, the overall sensitivity and
specificity pooled by the authors for the various indications of staging,
restaging, and identifying primary lesion were 92% and 82%, respec-
tively.2 Those authors also reported an overall management change in
about 51% of cases, highlighting the clinical importance of this imaging
method in managing these conditions. Consequently, the National
Comprehensive Cancer Network (NCCN) clinical practice guidelines
recommend the use of SSTR PET for staging, post-therapy evaluation
of NETSs, and detecting unknown primary NETs.> Furthermore, SSTR
PET is essential for determining patient eligibility before SSTR-
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TABLE 1 Summary of biologic targets and associated radiotracers in molecular cancer imaging.

Biologic target

Examples of radiotracers

Neoplasm

Applications and potential applications

Somatostatin
receptor (SSTR)

Prostate-specific
membrane antigen
(PSMA)

Norepinephrine
transporter

Estrogen
receptor (ER)

Cell proliferation

Cell membrane
synthesis

Amino acid
metabolism

%8Ga-DOTATATE,? *®Ga-
DOTATOC,*® ¢4Cu-DOTATATE,?
%8Ga-NODAGA-JR11

68Ga-PSMA-11,P 8F-rhPSMA-
7.3% 8F-DCFPyL*"

1231.MIBG,*" 124|-MIBG, 8F-MFBG,
18F_fluorodopamine, **C-HED

*8F-FES®

BE_FLT, *C-thymidine, *F-FMAU

11C-choline,® 8F-fluorocholine

'8F-FDOPA,>" "8F-FACBC,*" "®F-FET,
1C-methionine

Neuroendocrine tumors (Shah 2021°)

Meningioma (Albert 2024°)

Prostate cancer (Schaffer 20247)

Neuroendocrine tumors, primarily
neuroblastoma and pheochromocytoma
(Shah 2021,° Taieb 20192 Brisse 2011°)

Breast cancer (Ulander 2023°)

Lymphoma, breast cancer, lung cancer,
brain tumors (Minamimoto 2020,
Christensen 2021, Kostakoglu 2015,
Bashir 20204

Prostate cancer (Schaffer 20247)

Glioma, paraganglioma,
pheochromocytoma, medullary thyroid
carcinoma, and prostate cancer (Schaffer
2024,” Taieb 2019,2 Law 2019,® Filetti

Diagnosis, initial staging, post-therapy
follow-up, evaluation before SSTR
radioligand therapy

Diagnosis, initial staging, post-therapy
response assessment, restaging, selection
for SSTR radioligand therapy

Initial staging, evaluation of biochemical
recurrence/persistence, evaluation before
PSMA radioligand therapy

Diagnosis, initial staging, post-therapy
follow-up, evaluation before **'I-MIBG
radioligand therapy

Evaluation of ER expression status,
endocrine therapy selection

Post-therapy response assessment,
including response to CDK4/CDKé6
inhibition therapy

Evaluation of biochemical recurrence

Diagnosis, initial staging, biopsy planning,
post-therapy response assessment,
evaluation of biochemical recurrence (*8F-
FACBC in prostate cancer)

201919

Abbreviations: *'C, carbon-11; *8F, fluorine-18; ®*Cu, copper-64; ®8Ga, gallium-68; 23|, iodine-123; 2, iodine-124; *31l, iodine-131; CDK,
cyclin-dependent kinase; FACBC, fluorocyclobutane carboxylic acid; FDOPA, fluorodihydroxy phenylalanine; FES, fluoroestradiol; FET,
fluroethyltyrosine; FLT, fluorothymidine; FMAU, fluoromethylarabinofuranosyluracil; HED, hydroxyephedrine; MFBG, metaflurobenzylguanidine;
MIBG, meta-iodobenzylguanidine; rhPSMA, radiohybrid prostate-specific membrane antigen.

2Approved by the US Food and Drug Administration.
PApproved by the European Medicines Agency.

targeted radioligand therapy (RLT), also known as peptide receptor
radionuclide therapy (PRRT), a widely adopted approach for treating
metastatic or inoperable differentiated NETs. This recommendation
originates from the phase 3 clinical NETTER trial (ClinicalTrials.gov
NCT01578239),
progression-free survival (PFS) and overall survival (OS) among pa-

identifier which  demonstrated  improved
tients with midgut NETSs that were positive on SSTR PET who received
SSTR RLT (lutetium-177 [Y”7Lu]-DOTATATE) together with long-
acting hormonal therapy versus hormonal therapy alone.??

In other oncologic settings, SSTR PET also plays multiple
important and distinct roles. For de novo and recurrent meningi-
oma, SSTR PET/CT is able to discriminate tumor from tumor-free
brain tissue with overall sensitivity and specificity of 90% and

1.2% Moreover,

73%, respectively, as demonstrated by Rachinger et a
SSTR PET has been identified as complementary to contrast-
enhanced MRI, the current imaging gold standard in meningioma
diagnosis and treatment planning. In a small cohort of eight pa-
tients, SSTR PET used for radiation therapy planning allowed for a
reduction in treatment volumes compared with MRI-guided plan-

ning. This approach minimized radiation exposure to normal brain

tissue without increasing the risk of local recurrence within 6
months.?* Joint practice guidelines/procedure standards for the
diagnostics and therapy of meningioma using SSTR PET have been
developed by the European Association of Nuclear Medicine, the
European Association of Neurooncology, the PET Task Force of the
Response Assessment in Neurooncology Working Group, and the
Society of Nuclear Medicine and Molecular Imaging and recom-
mend the use of SSTR PET in initial meningioma staging to confirm
the meningioma histology in lesions that appear ambiguous on MRI,
in post-therapy response assessment, and in determining RLT
eligibility.®

In head and neck paragangliomas and pheochromocytomas/par-
agangliomas with cluster 1A mutations, ®®Ga-labeled SSTR PET is
considered the most sensitive imaging modality, demonstrating a
lesion-based detection rate reaching 99% (Figure 2) in the post-
therapy setting (the authors did not distinguish between restaging
or suspected recurrence), as demonstrated by a prospective study
comparing the diagnostic performance of ¢®Ga-DOTATATE with 8F-
FDG among other molecular imaging modalities for the evaluation of

cluster 1A pheochromocytoma and paraganglioma.?> With regard to
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FIGURE 1 ©%8Ga-DATA5m-LM4 SSTR antagonist PET/CT detects very small histopathologically proven metastases in both breasts (red
circles) in a patient with a well-differentiated neuroendocrine tumor of the ileum that are not seen on conventional CT or MRI. 68Ga-DATASM,
gallium-68-labeled (6-pentanoic acid)-6-(amino)methyl-1,4-diazepinetriacetate; CT, computed tomography; MRI, magnetic resonance
imaging; PET, positron emission tomography; SSTR, somatostatin receptor.
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FIGURE 2 Case example of an excised retroperitoneal paraganglioma with metastasis involving several skeletal regions visible on SSTR
ligand ®8Ga-DOTANOC imaging. This includes an intensely avid L2 vertebral bone marrow lesion (arrow) showing only mild, nonspecific
sclerosis on CT but confirmed by MRI to be a metastasis. CT indicates computed tomography; ®Ga-DOTANOC, gallium-68-labeled dodecane
tetraacetic acid-1-Nal(3)-octerotide; MRI, magnetic resonance imaging; SSTR, somatostatin receptor.

pretherapy evaluation, another prospective study by Janssen et al. head and neck paraganglioma, metastatic/multifocal disease, pre-
reported that the lesion-based detection rate for sporadic metastatic surgical staging when the primary tumor is >5 cm and, notably, in
pheochromocytoma and paraganglioma was 98%.2¢ Hence it is rec- disease detection screening in asymptomatic succinate dehydroge-
ommended for adult and pediatric staging and follow-up of sporadic nase (SDH) mutation carriers.>® In the setting of medullary thyroid
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cancer, the NCCN recommends the use of ¢8Ga-DOTATATE: (1) for
staging in patients with a high tumor burden, (2) in cases charac-
terized by a calcitonin plasma level >400 pg/mL, (3) in the presence
of a high carcinoembryonic antigen level, and (4) when there is evi-
dence of biochemical recurrence.?”

%8Ga-DOTATATE and ®8Ga-DOTANOC PET have also shown
potential utility in prostate cancer that has neuroendocrine differ-
entiation, with high uptake of these tracers indicating a poor prog-
nosis.?® The degree of SSTR PET uptake in these tumors can also be
used to determine eligibility for SSTR RLT, which has already been
attempted a few times in the literature.??

%8Ga-DOTA SSTR PET has been identified as more sensitive on a
per-lesion basis than conventional norepinephrine-based imaging
(see below) for the evaluation of neuroblastoma with suspected
metastasis.>*3! Its potential lies particularly in meta-iodo-benzyl-
guanidine (MIBG)-negative, relapsed or refractory disease.*? Finally,
68Ga-DOTATATE PET may also be useful in pituitary tumors,
differentiating postsurgical scar from disease recurrence, and for RLT

planning.33

PSMA-based imaging

PSMA is a transmembrane protein expressed by prostatic tissue and
proven to be an excellent biologic target for molecular imaging of
prostate cancer. Current probes specific to PSMA are inhibitor
peptides that bind to the extracellular domain of the antigen and are
labeled with positron-emitting radionuclides, such as the US Food
and Drug Administration (FDA)-approved %8Ga-PSMA-11, 18F-
radiohybrid (rh)PSMA-7.3, and 8F-DCFPyL as well as others not
yet FDA-approved.’*> Both ¢®Ga-PSMA-11 and ®F-DCFPyL are
also approved by the European Medicines Agency.

The clinical value of PSMA-targeting PET in the diagnosis and
management of prostate cancer has been thoroughly investigated,
leading to the incorporation of this imaging modality into updated
clinical guidelines on prostate cancer management, including the
European Association of Urology-European Association of Nuclear
Medicine-European Society for Radiotherapy and Oncology-
European Society of Urogenital Radiology-International Society of
Urological Pathology-International Society of Geriatric Oncology
guidelines and the NCCN guidelines.”*¢-%8 PSMA PET/CT is now
used in the routine initial staging of prostate cancer in patients with
unfavorable intermediate-risk features (Gleason score 4 + 3,
prostate-specific antigen [PSA] 10-20 ng/mL, and/or T2b-T2c clinical
stage) or high-risk features (Gleason score >4 + 4, PSA >20 ng/mL,
and/or T3-T4 clinical stage).” In the randomized controlled proPSMA
trial (Australian New Zealand Clinical Trials Registry number
ANZCTR12617000005358), greater diagnostic accuracy was re-
ported in the staging of high-risk prostate cancer by PSMA PET/CT
using ®8Ga-PSMA-11 compared with the traditional combination of
CT and technetium-99 isomer (°°™Tc)-diphosphonate bone scan,
such as ?°™Tc-methylene diphosphonate or MDP (area under the

receiver operating characteristic curve [AUC], 92% [95% confidence

interval (Cl), 88%-95%] vs. 65% [95% Cl, 60%-69%]).>° The few
studies that compared the diagnostic performances of the different
PSMA-targeting PET tracers (i.e., °®Ga-PSMA-11, 8F-rhPSMA-7(.3),
and '8F-DCFPyL) demonstrated that they are comparable for initial
diagnosis and biochemical recurrence of prostate cancer.**~#2

PSMA PET/CT and multiparametric MRI of the pelvis are likely
to be complementary for locoregional (tumor [T] and lymph node [N])
staging. In a meta-analysis by Ma et al, staging PSMA PET/CT
pooling different tracers together (i.e., *®Ga-PSMA-11, ¢8Ga-PSMA-
617, F-PSMA-1007, and *8F-DCFPyL) was more sensitive for pri-
mary lesion and lymph node detection (90% vs. 84% and 67% vs.
36%, respectively), whereas multiparametric MRl was more sensitive
for seminal vesicle involvement and extracapsular extension (60% vs.
51% and 66% vs. 59%, respectively).*® Staging PSMA PET/CT using
18F-pPSMA-1007 was also compared with whole-body MRI for the
detection of distant metastasis in a clinical trial by Anttinen et al. and
was found to outperform MRI in sensitivity for bone (100% vs, 69%,
respectively) and soft tissue lesions (82% vs. 73%).** In light of the
very high overall accuracy in cancer staging with PSMA PET, the few
retrospective studies comparing PSMA PET with conventional MRI
staging indicated improved survival using the former.*>*¢ No data
from prospective randomized studies are available to assess the in-
fluence of staging PSMA PET on survival, but several clinical trials are
ongoing to address this question (e.g., ClinicalTrials.gov identifiers
NCT04175431, NCT05000827, and NCT06003556).

Another important role is played by PSMA PET/CT in the follow-
up of patients with prostatic cancer after potentially curative pros-
tate cancer treatment. In this regard, PSMA PET is valuable in tumor
localization in case of biochemical recurrence (defined as PSA rise >2
ng/mL above nadir after radiotherapy and an increase in PSA to >0.2
ng/mL confirmed by a second PSA level >0.2 ng/mL after prosta-
tectomy with PSA measured at 6-13 weeks postsurgery) or in case of
biochemical persistence (defined as a persistently elevated PSA >0.1
ng/mL more than 6 weeks after prostatectomy).” Figure 3 shows an
example of a patient who had biochemical recurrence with a meta-
static bone lesion best appreciated on PSMA PET/CT.

The pooled sensitivity and specificity of PSMA PET/CT using
different PSMA radiotracers for biochemical recurrence has was 84%
and 97%, respectively, based on a meta-analysis by Jeet et al.*” with
PSMA PET/CT detecting locoregional and distant disease in up to
70% of patients with castration-resistant prostate cancer who were
negative on conventional imaging.*® With regard to the sensitivity for
distant metastasis in the setting of biochemical recurrence, PSMA
PET/CT using %®Ga-PSMA-11 proved superior to whole-body MRI
with an AUC of 90% (95% Cl, 85%-95%) versus 67% (95% Cl, 54%-
80%), as reported by Emmett et al®?

Madan and colleagues' group raised a crucial question about
whether the earlier detection of disease sites using PSMA PET/CT—
and the subsequent more aggressive treatment based solely on posi-
tive findings from this imaging tool—actually leads to improved patient
outcomes compared with treatment decisions based on conventional
imaging alone.>® This is being prospectively evaluated in ongoing
clinical trials (e.g., ClinicalTrials.gov identifier NCT05919329).
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FIGURE 3 Example of a patient with biochemical prostate cancer recurrence (PSA, 0.25 ng/mL) with a solitary, metastatic, T1 vertebral
bone lesion (arrows) best appreciated on PSMA PET. PET indicates positron emission tomography; PSA, prostate-specific antigen; PSMA,

prostate-specific membrane antigen.

Another important application of PSMA PET/CT is assessing
eligibility before RLT with !"7Lu-PSMA-617 for metastatic
castration-resistant prostate cancer, a new treatment recently
approved by the FDA after the phase 3 VISION trial (ClinicalTrials.
gov identifier NCT03511664) demonstrated that *’’Lu-PSMA-617
prolonged PFS and OS when added to standard-of-care manage-
ment of these patients.”>!

Additional applications of PSMA PET that are not yet part of the
routine management of prostate cancer include its use for radio-
therapy planning.®? In a clinical trial by Armstrong et al., PSMA PET
using ®®Ga-PSMA-11 changed management in 45% of patients before
salvage radiotherapy for biochemical recurrence compared with a
22% change in those who did not undergo PSMA PET (p = .002).>%
Zamboglou et al. retrospectively demonstrated the ability of PSMA
PET-guided salvage radiotherapy to improve biochemical recurrence-
free survival versus radiotherapy not informed by PSMA PET
(p = .01).>* Prospective studies assessing the survival impact of using
PSMA PET in this setting are needed. PSMA PET may also be used for

response assessment after systemic treatment for metastatic pros-
tate cancer.®”

In the United States, Australia, and most of Europe, PSMA
PET and other forms of molecular prostate cancer imaging, such
as '8F-fluciclovine PET (see below), are accessible for routine
clinical use. However, PET in general is not readily accessible in
many developing countries, unlike traditional gamma cameras that
can be used to image “"™Tc-based tracers. To meet the demand
for molecular prostate cancer imaging in regions with limited ac-
cess to PET devices or tracers, the single-photon emission CT
(SPECT) tracer °"™Tc-PSMA has been developed, and a few
retrospective studies have compared the performance of **™Tc-
PSMA SPECT/CT and ®3Ga-PSMA PET/CT for prostate cancer
diagnosis, recurrence, or restaging. Available data suggest that
they are comparable in the detection of lesions >1 cm and at PSA
levels >2 ng/mL, thus providing a potentially cheaper and more
accessible form of valuable PSMA-based imaging for countries and

peoples that need it.”¢">?
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FIGURE 4 (A) Baseline, axial PSMA PET slice through the lower chest and upper abdomen in a patient with CRPC revealing hepatic
metastases with uptake greater than normal liver (white circle). (B) Baseline axial FDG PET slice showing negligible FDG uptake in the same
liver metastases (white circle) with intense PSMA uptake. (C) After three RLT cycles, the PSA level dropped from approximately 76 ng/mL to
approximately 30 ng/mL, and a fourth RLT cycle was given followed by a PSMA scan that revealed a good imaging response in the liver
metastases (white circle), with other liver, bone, and lymph node metastases following a similar pattern, resulting in the administration of a
fifth RLT cycle. (D) Because of a rising PSA level before the fifth RLT cycle, which was discordant with the good imaging response on PSMA
PET, FDG PET was performed to assess for disease dedifferentiation. The FDG PET scan shows increased FDG uptake in the same region of
liver metastases (white circle) as well as other metastases (not shown) that were negative on follow-up PSMA, indicating disease
dedifferentiation. CRPC indicates castration-resistant prostate cancer; CT, computed tomography; FDG, fluorodeoxyglucose; MRI, magnetic
resonance imaging; PET, positron emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; RLT,

radioligand therapy.

Our patient coauthor (H.J.Z.) provides an interesting perspective
regarding the use of PSMA PET in prostate cancer. He has castration-
resistant prostate cancer metastatic to the liver, bone, and lymph
nodes and underwent a baseline ®®Ga-PSMA PET scan to assess PSMA
uptake before administering 7”Lu-PSMA RLT. All lesions had higher
tracer uptake than the normal liver, deeming him eligible for treatment,
and he subsequently underwent three cycles of RLT with a good
response (PSA decreased from approximately 76 ng/mL at baseline to
approximately 30 ng/mL after the three cycles). A fourth RLT cycle was
then given followed by a PSMA PET scan about 3 weeks thereafter
showing a good imaging response, and a fifth cycle was then adminis-
tered. However, it was observed that the PSA level actually increased
to approximately 65 ng/mL before the fifth cycle. This discordance
between the good imaging response and the rising PSA level was later
investigated by performing an FDG PET scan to determine whether
there might have been a prostate cancer cell dedifferentiation result-
ing in a more aggressive disease course with negative PSMA but pos-
itive FDG.®° Indeed, the FDG PET scan performed 2 weeks after the
fifth cycle showed increased FDG uptake in the PSMA-negative met-

astatic lesions, including the liver lesions, with further rise in PSA to

approximately 102 ng/mL, indicating increased cancer aggressiveness/
dedifferentiation and the need to adjust treatment (Figure 4). He states
the following: “I, the patient H.J.Z., am appreciative of the fact that
molecular imaging using two different radiotracers in my case
contributed to the individualization of my management. | found the
PSMA and FDG PET scans easy to undergo without any side effects or
significant inconvenience. | also had no concerns regarding the radia-
tion dose delivered from these tests, which is trivial compared to the
radiation dose | received from radioligand therapy and is justified
considering the benefit-to-risk ratio.”

Despite the name, PSMA is not a specific biomarker for malig-
nant or benign prostate tissue, and its expression has been demon-
strated in several tumor types in which PSMA PET has exhibited
potential clinical value. PSMA PET using *®Ga-PSMA-11 has shown
potential in the diagnosis and prognosis of glioma and glioblastoma,
particularly in distinguishing low-grade from high-grade glioma, with
higher PSMA avidity in the latter.3®> For example, a study that
compared pretherapy PSMA PET with FDG PET in distinguishing
low-grade from high-grade glioma, Liu et al. found that PSMA PET
with ¢8Ga-PSMA-617 was superior, with an AUC of 0.96 versus 0.79
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for FDG..* PSMA PET has also been shown to be useful in the
diagnostic evaluation of salivary gland tumors, renal cell carcinoma,
and thyroid carcinoma.®?-%*

A relatively recent advancement in radiotherapy is the devel-
opment of biology-guided radiotherapy enabled by the RefleXion X1
radiotherapy system, which has opened a new avenue for the use of
PET tracers for the real-time, tracer signal-guided administration of
ionizing radiation. Rather than guidance by anatomic imaging alone,
biology-guided radiotherapy allows radiotherapy dose delivery
directly to PET-avid tumor tissue because the PET tracer signals are
detected with dose adjustments made in real time, accounting for
target movement and sparing normal tissue.®” It has been demon-
strated that this novel technology is effective, and it has been
approved by the FDA for use in primary or metastatic lung and bone
tumors using *®F-FDG PET/CT.%® Preliminary studies have also
demonstrated feasibility in its use with PSMA PET/CT in the treat-

ment of prostate cancer®” and renal cell carcinoma.®®

Norepinephrine transporter-based imaging

The noradrenaline (norepinephrine) transporter (NAT) is a trans-
membrane protein responsible for synaptic terminal transportation
of endogenous norepinephrine in neurons and adrenal chromaffin
cells. Like the SSTRs, NATs are expressed by cells of neuroendocrine
origin and are optimal targets for molecular imaging using radio-
labeled norepinephrine analogs.

The most common radioligand/analog for NAT imaging is
radioiodine-labeled MIBG in the form of the SPECT tracers iodine-
123 [2%]]-MIBG and *1I-MIBG. However, MIBG imaging can also
be done using the PET tracer 24I-MIBG. This tracer has shown a
greater lesion detection rate compared with SPECT tracers when
performed in children who have relapsed neuroblastoma, with 24I-
MIBG detecting lesions throughout the body that were undetected
by 12%I-MIBG SPECT/CT, but its routine clinical use in place of the
more accessible SPECT tracers needs further justification.®’

For neuroblastoma, *2*|-MIBG SPECT remains the first-line im-
aging agent for staging and follow-up imaging, despite the good
performance of SSTR PET in this setting.” In contrast, the diagnostic
performance of MIBG SPECT for nonsporadic pheochromocytoma
and paraganglioma is less satisfactory as opposed to sporadic pheo-
chromocytoma, in which it has an estimated sensitivity of 83%-100%
and specificity of 95%-100%.%

Outside the realm of radioiodine-labeled tracers, °F-
metaflurobenzylguanidine, carbon-11 (*1C)-hydroxyephedrine, and
18F_fluorodopamine are PET tracers that target the norepinephrine
transporter and show potential to outperform MIBG SPECT in the
pretherapy and post-therapy evaluation of neuroblastoma and/or
pheochromocytoma and paraganglioma.”®”? Their clinical use, how-
ever, has been limited by the short half-life of 1C and *8F, hampering
delayed imaging, complex labeling procedures, and radionuclide dis-
tribution challenges. Furthermore, it is not clear whether the supe-
riority of these tracers over MIBG SPECT is caused by the use of PET

technology or by the superior characteristics of these ligands. A
head-to-head comparison between these tracers and 24| MIBG
would likely address this issue.

Estrogen receptor-based imaging

Estrogen receptors (ERs) are intracellular mediators targeted by the
hormone estrogen that are highly expressed in the most common
forms of breast cancer. Therefore, ERs are prime targets for the
molecular imaging and noninvasive evaluation of breast cancer using
the 18F-labeled PET tracer fluoroestradiol (*®F-FES).

Accepted applications of 8F-FES include: (1) assessing ER status
in lesions that are difficult to biopsy or when biopsy is nondiagnostic,
resulting in a pooled sensitivity and specificity in the pretherapy
setting of 82% and 95%, respectively, as demonstrated by Evangel-
ista et al.”?; (2) at diagnosis or after progression of metastatic disease
to guide antiestrogen therapy, thanks to its ability to evaluate
biomarker expression in all metastatic lesions with greater safety
profile compared with tissue biopsy; and (3) to solve clinical dilemmas
arising with other imaging modalities, including FDG PET, showing
equivocal or inconclusive findings, provided that the ®F-FES PET
results could lead to treatment modification.’® Furthermore, its
diagnostic performance in the staging of ER-positive breast cancer
was identified as comparable to, if not better than, the standard of
care with FDG PET/CT.”?

18E_FES PET is particularly useful in patients with known invasive
lobular breast cancer, in which substantial numbers of metastatic
lesions are not FDG-avid.”* In one head-to-head comparison study by
Ulaner et al. in seven patients, staging 8F-FES PET detected more
metastatic invasive lobular breast cancer bone lesions than FDG PET
(254 *8F-FES-avid lesions vs. 111 *®F-FDG-avid lesions) and showed
overall greater uptake within disease sites. However, in one patient,
liver metastases were evident on FDG PET but not on *®F-FES PET.”®
It has been demonstrated that FDG PET and ®F-FES PET success-
fully complement each other in the setting of metastatic invasive
lobular breast cancer. In one study involving 20 patients who un-
derwent imaging with both tracers, ®F-FES PET was identified as
more sensitive than FDG PET in the detection of bone metastases (43
vs. 37 of 53 skeletal anatomic regions involved with superior
detection of bone metastasis in nine versus four patients; p = .05);
whereas FDG PET was more sensitive in the detection of nonbone
metastases (57 vs. 37 lesions; p < .001).”% The inferiority of *®F-FES
PET in the liver because of its high physiologic uptake was demon-
strated by Boers et al., who observed that ®F-FES PET had only 18%
sensitivity when using visual assessment alone.”” Taken together,
these results suggest that both *F-FES PET and FDG PET should be
performed in the evaluation of metastatic invasive lobular breast
cancer.”®

Finally, in the setting of ER-positive brain metastasis, ®F-FES
PET may play an adjunct role for radiotherapy response assess-
ment, distinguishing normal from recurrent or residual disease from

radiotherapy sequalae.”®
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Beyond breast cancer, potential uses of *F-FES PET that have
been evaluated include the diagnosis, prognostication, and therapy
response assessment of endometrial and ovarian cancers.”” 82 When
used with FDG PET/CT, F-FES PET may have a role in dis-
tinguishing benign from malignant uterine tumors.8? Moreover, in a
prospective study by Yamada et al., low *®F-FES uptake of the pri-
mary tumor in patients with endometrial cancer at staging was
strongly predictive of lymph node metastasis and was an indepen-
dent predictor of poor PFS and 0S.”° Furthermore, Roze et al.
demonstrated in a small cohort of six patients that *F-FES PET/CT
potentially could be used to determine eligibility of patients with
granulosa cell tumors of the ovary for hormonal therapy and to

predict treatment response.®°

Proliferation-based molecular imaging

Cell proliferation is another hallmark of cancer and has been suc-
cessfully imaged in vivo by tracking cell nucleoside metabolism and
DNA synthesis. The most studied proliferation tracer is *°F-
fluorothymidine (FLT), mostly used for therapy response assess-
ment.11- 148384 Other agents that have been used include 1C-labeled
thymidine analogs and *8F-fluoromethylarabinofuranosyluracil.8>8¢

The potential role of FLT PET lies in therapy response
assessment for cancer, including B-cell lymphoma,** head and neck
squamous cell carcinoma,®® mesothelioma,* lung cancer,’? and
breast cancer,® as well as in the evaluation of brain tumors.*
Minamimoto et al. demonstrated that, in patients with diffuse large
B-cell lymphoma who received either rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone or rituximab, etoposide,
prednisone, vincristine, cyclophosphamide, and doxorubicin, interim
FLT PET/CT performed after two cycles of chemoimmunotherapy
was a superior independent predictor of outcome compared with
interim FDG PET/CT performed in the same patients.’? Chris-
tensen et al. found added value in the use FLT PET/CT for the
diagnosis of lung cancer relapse postradiotherapy, distinguishing it
from benign radiation sequelae with greater specificity than FDG
PET/CT.*? In addition, FLT PET/CT has potential use in the plan-
ning and monitoring of radiotherapy to minimize bone marrow
toxicity by evaluating baseline FLT bone marrow uptake and
radiotherapy-induced uptake changes.5”88

Unfortunately, FLT has not been adopted for routine use because
of its scarce availability and lack of approval by the FDA at the time
of this writing. This has also likely hindered clinical research on its
use in cancer assessment; therefore, and it has not yet been officially
incorporated into cancer management guidelines. Moreover, it has
not been demonstrated that FLT is consistently superior or of added
value to FDG in disease staging of lymphoma, breast cancer, lung
cancer, and other cancers and thus cannot be recommended for
cancer staging.8?~ However, it could be used to assess response to
cyclin-dependent kinase 4 and 6 inhibition therapy in various can-
cers, such as breast cancer and mantle cell Iymphoma.”’s’3 In fact,

this was tested in a clinical trial in patients with mantle cell

lymphoma®* and is currently under investigation in patients with
breast cancer (ClinicalTrials.gov identifier NCT02608216).

Cell membrane synthesis-based molecular imaging

Along with an increased proliferation rate, an elevated rate of cell
membrane synthesis accompanied by an increased metabolism of its
phospholipid components, such as choline, is a hallmark of neoplasms.
Molecular imaging of cell membrane synthesis is predominantly
based on the labeling of choline with *C or 8F radionuclides.
However, ®F-fluorocholine is preferred because it overcomes the
logistical challenges associated with the short physical half-life of **C
of only 20 minutes.

Both **C-choline and ®F-fluorocholine have established roles in
the evaluation of prostate cancer, including in the setting of
biochemical recurrence.” However, the use of choline PET seems
limited primarily by its reduced sensitivity for small regional lymph
node detection,” and its use is controversial when PSA values are <1
ng/mL.7%~?% Accordingly, choline PET, even using *®F-fluorocholine,
has been almost completely replaced by PSMA PET because of the
overall higher sensitivity and detection rate of the latter in the
setting of biochemical recurrence, as demonstrated in randomized
clinical trials comparing both tracers.”?*%° Consequently, choline PET
is arguably reserved for the evaluation of biochemical recurrence
only when PSMA PET is unavailable.”

18F_fluorocholine PET has potential application in the setting of
intrahepatic well differentiated hepatocellular carcinoma (HCC) in
pretreatment and post-treatment settings in part because of its

relatively low liver uptake,101102

Amino acid-based molecular imaging

A few amino acids (AAs) have been radiolabeled over the years for
the purpose of molecular imaging of AA metabolism in specific cancer
types, based on the upregulation of AA transport and the consequent
increased AA uptake compared with normal tissue. Examples of AAs
labeled with positron emitters include *'C-methionine (*'C-MET),
18F_fluroethyltyrosine (*8F-FET), '8F-fluorodihydroxyphenylalanine
(*|®F-FDOPA) and *®F-fluorocyclobutanecarboxylic acid (*®F-FACBC;
also known as *F-fluciclovine or Axumin [Blue Earth Diagnostics]).
An example of an AA tracer available for SPECT imaging is 23I-
iodomethyltyrosine (*2°I-IMT). *F-FDOPA and ®F-fluciclovine are
FDA-approved, while *F-FET is undergoing evaluation for approval
by the FDA.

Each of these radiolabeled AAs has found specific indications in
various oncological settings. **C-MET, 8F-FET and ‘8F-FDOPA have
been extensively used for the evaluation of brain tumors.1>103104
Although 1C-MET was frequently used in early PET studies exploiting
the upregulated AA metabolism, it was later largely replaced by 8F-
labeled AA tracers, such as 8F-FET and 8F-FDOPA.'° In general,

all radiolabeled AAs show relatively low uptake by normal brain tissue,
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and brain tumors can be distinguished from the surrounding normal
brain tissue by increased AA uptake with high contrast. This altered
metabolic activity underpins the rationale for several diagnostic aims:
(1) to guide needle biopsy at diagnosis, (2) to differentiate neoplastic
from nonneoplastic lesions, (3) to delineate tumor extent, (4) to
distinguish tumor relapse from treatment-related changes, and (5) to
assess treatment response.'® For example, in the ARTE trial (Clin-
icalTrials.gov identifier NCT01443676), patients aged 65 years or
older with glioblastoma who received bevacizumab with or without
radiotherapy performed poorly, with inferior OS when pretherapy
and/or post-therapy ®F-FET uptake was elevated.'®® Moreover,
several studies have demonstrated disagreement between pretherapy
MRI and AA PET tumor volumes, which, if not taken into consideration,
could lead to undertreatment using either modality alone.l®”-107
Consequently, radiolabeled AAs have become the preferred PET
tracers in patients with brain tumors, and the use of AA PET as a
supplement to MRI is recommended.*>10-112

18E_FDOPA PET/CT is also useful in the detection and localization
of pheochromocytoma and paraganglioma, with diagnostic perfor-
mance varying considerably between the two entities and according to
the different genetic mutation associated.?**1%# |n two meta-analyses,
the pooled sensitivity at initial diagnosis was 79% for paraganglioma
and 97% for pheochromocytoma.l*>11¢ 8F_.FDOPA PET is further
recommended by the European Society of Medical Oncology in the
preoperative evaluation of medullary thyroid carcinoma with a calci-
tonin level >500 pg/mL or when metastasis is suspected.'®

With regard to 18F_fluciclovine, its recommended clinical use is in
the evaluation of biochemical recurrence in prostate cancer as a
second-choice imaging modality when PSMA PET is unavailable.” Its
use for radiotherapy planning in the setting of postsurgical biochemical
recurrence has been found useful, as seen in the EMPIRE-1 trial
(ClinicalTrials.gov identifier NCT01666808) in which there was an
improvement in 3-year biochemical failure-free survival when used
with conventional imaging versus conventional imaging alone to guide
radiotherapy (75.5% vs. 63.0%, respectively; p = .0028).1Y”

Emerging biologic targets for molecular imaging

There are multiple biologic targets that have been more recently
investigated, showing considerable promise in cancer molecular im-
aging. Table 2 shows some of the emerging biologic targets and their
respective radiotracers along with suggested clinical applica-
ti0n5.118_124

Among the most promising is the radiolabeled fibroblast-
activating protein inhibitor (FAPI) imaging targeting fibroblasts
recruited into the TME, thereby enabling cancer imaging. FAPI PET is
proving to be a valuable alternative to FDG PET in the evaluation of
various cancers in which FDG performance is suboptimal because of
low FDG avidity or relatively high background uptake. Examples
include sarcomas, gastrointestinal carcinomas, pancreatic adenocar-
cinomas, hepatocellular carcinomas, cholangiocarcinomas, and lung

adenocarcinomas as well as breast, bladder, ovarian, and head and

neck cancers.!'® Several, mostly retrospective studies comparing the
performance of FAPI PET/CT versus FDG PET/CT in the same can-
cers are currently available. In ovarian cancer, Liu et al. observed that
%8Ga-FAPI PET/CT detected more metastatic peritoneal lesions in
both lesion-based and patient-based analyses compared with FDG
PET/CT at initial diagnosis and for recurrence, leading to a change in
management for about 14% of patients.'?®> More impressive changes
in management (47.8%) were reported by Zhang et al. in HCC when
staging FAPI and staging FDG were prospectively compared, with the
former showing significantly superior intrahepatic and lymph node
lesion detection.?® Figure 5 illustrates the difference between FAPI
PET and FDG PET performed in the same patient with HCC. In a
retrospective study by Metzger et al., restaging FAPI PET for locally
advanced or recurrent pancreatic adenocarcinoma resulted in a
major change in planned radiotherapy in 52% of patients compared
with contrast-enhanced CT alone.*?” Thus FAPI PET as a TME-
centric probe may be used for staging, restaging, and response
assessment instead of or in addition to the mainly cancer cell-centric
FDG PET. Larger randomized clinical trials are needed to clearly
establish a role for FAPI PET in the various settings and to determine
whether its use improves patient outcome.

Another probe is the C-X-C chemokine receptor type 4 (CXCR4)
ligand labeled with 8Ga (e.g., ®®Ga-pentixafor and ®®Ga-pentixather),
64Cu, and *8F, which is potentially useful in patients with non-Hodgkin
lymphoma, lung cancer, breast cancer, HCC, and other solid tumors.t?
The body of evidence supporting the clinical use of CXCR4 is less
impressive compared with FAPI. However, *®Ga-pentixafor has been
compared with FDG in several studies, including a prospective one by
Mayerhoefer et al. indicating superior performance of the former
tracer in the pretherapy evaluation of mantle cell lymphoma.?®
Conversely, when applied for nasopharyngeal carcinoma staging and
recurrence detection, no significant difference was reported between
the two radiotracers.??? Larger studies are needed to fully elucidate
the potential of CXCR4 PET in various clinical scenarios.

Other agents include the glucagon-like peptide-1 receptor

-4,129 gastrin-releasing peptide receptor ligands (e.g.,

17128

agonist exendin

) 121
’

bombesin carbohydrate antigen 19-9 antibody 5B carbo-

hydrate antigen IX antibody girentuximab,’*?> poly(adenosine

diphosphate-ribose) polymerase inhibitors,23

and tumor hypoxia-
targeting agents (e.g., nitroimidazoles).?>* The tumor hypoxia
tracers, such as *®F-fluoromisonidazole (FMISO), show promise in
guiding radiotherapy planning to maximize efficacy and minimize risk
as well as predicting response by determining baseline tumor hypoxia
for head and neck and nonsmall cell lung cancer.**%3! One phase 2
clinical trial investigating radiotherapy dose escalation in head and
neck cancer using *®F-FMISO PET demonstrated a significantly bet-
ter response among nonhypoxic tumors (no *8F-FMISO uptake) and a
25% improvement in 5-year local disease control among patients
with hypoxic tumors receiving dose-escalated radiotherapy
compared with standard radiotherapy.3° Other promising agents are
monoclonal antibodies targeting receptor tyrosine kinases, including
human epidermal growth factor receptor 2-targeting zirconium-89-

trastuzumab for the assessment of human epidermal growth factor
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TABLE 2 Biologic targets and associated radiotracers with promising applications in cancer molecular imaging.

Biologic target

Radiotracer(s)

Prospective cancer imaging applications

Fibroblast-activating protein (FAP) expressed
in the tumor microenvironment

C-X-C motif chemokine receptor type 4
(CXCR4)

Glucagon-like peptide-1 receptor (GLP-1R)

Gastrin-releasing peptide receptor (GRPR)

Receptor tyrosine kinases (RTKs), immune
checkpoints and immune cell receptors

%8Ga-labeled, '8F-labeled, and *"™Tc-labeled FAP
inhibitors, such as FAPI-04 and FAPI-46

%8Ga-labeled, ®*Cu-labeled, *®F-labeled, and
99MTc-labeled CXCR4 ligands, such as pentixafor
and pentixather

%8Ga-labeled, 8F-labeled, *"™Tc-labeled, and
111y |abeled GLP-1R agonist (exendin-4)

%8Ga-labeled, ®*Cu-labeled, ‘®F-labeled, *!In-
labeled, and **™Tc-labeled GRPR ligands (e.g.,
bombesin)

44Cu-labeled and 87Zr-labeled receptor tyrosine
kinase antibodies (e.g., trastuzumab, bevacizumab,
pembrolizumab)

89Zr-labeled antibodies against CD4 and CD8
expressed on tumor-infiltrating lymphocytes (e.g.,
1AB22M2C)

44Cu-labeled polyglucose nanoparticles for tumor-
associated macrophages (e.g., macrin)

897r-labeled antibodies targeting cancer stem cell
biomarkers (e.g., bstrongomab, anti-CD133, anti-

Sarcomas, gastrointestinal carcinomas, liver and
biliary tract cancers, lung and pancreatic
adenocarcinomas, and breast, bladder, ovarian,
and head and neck cancers (Yang 202418)

Non-Hodgkin lymphoma, lung cancer, breast
cancer, hepatocellular carcinoma, and other solid
tumors (Cheng 202419

Insulinomas (Boss 202412°)

Prostate and breast cancer (Chernov 202321

Breast, gastric, ovarian, nonsmall cell lung,
colorectal, and esophageal cancer as well as
melanoma and squamous cell carcinoma of the
head and neck (Manafi-Farid 202222

Lung cancer (Manafi-Farid 202212?)

Lung cancer (Manafi-Farid 2022122

Prostate cancer, colorectal cancer, and central
nervous system tumors (Manafi-Farid 2022%2)

LGR5)

Carbohydrate antigen 19-9 (CA 19-9) 897r-5B1

Carbohydrate antigen IX

Poly(adenosine diphosphate-ribose)

polymerase (PARP) olaparib)

Tumor hypoxia

124|_girentuximab and 8°Zr-girentuximab

18F_|abeled nitroimidazoles, including FMISO,
FAZA, FETNIM, and EF5, as well as ®*Cu-ATSM

Pancreatic ductal adenocarcinoma (Manafi-Farid
2022'%2)

Renal cell carcinoma (Manafi-Farid 2022'22)

18F-|abeled and '?%|-labeled PARP inhibitors (e.g., Prostate and breast cancer (Xu 202223

Glioma, breast, head and neck, cervical,
esophageal, and lung cancer and
rhabdomyosarcoma (Perez 202324

Abbreviations: *8F, fluorine-18; ¢“Cu, copper-64; 8Ga, gallium-68; 897r, zirconium-89; ?°Tc, technetium-99 isomer; 1In, indium-111; %1, iodine-123;
1241 "iodine-124; Y"7Lu, lutetium-177; ATSM, diacetyl-bis(N4-methylthiosemicarbazozne); DOTA, dodecane tetraacetic acid; DOTATATE,
DOTA-octreotate; DOTATOC, DOTA-octreotide; FAZA, fluoroazomycin arabinoside; FETNIM, fluoroerythronitroimidazole; FMISO,
fluoromisonidazole; LGR5, leucine-rich repeat-containing G-protein-coupled receptor 5 precursor.

receptor 2-positive malignancies and predicting response to targeted
therapy,®? as well as antibodies targeting immune checkpoints, im-
mune cells in the TME, such as CD4-positive or CD8-positive tumor-
infiltrating lymphocytes, and tumor-associated macrophages as well
as cancer stem cell biomarkers. These tracers are particularly useful
for characterizing the TME and predicting response to immuno-
therapy for which there are ongoing clinical trials (e.g., ClinicalTrials.
gov identifier NCT04168528).122133

CONCLUSION AND PROSPECTS

By radiolabeling appropriate probes capable of targeting various
aspects of cancer biology, molecular imaging provides a noninva-

sive method of cancer evaluation relevant for patient-specific

(individualized) precision medicine. Molecular imaging with nu-
clear probes alongside advanced PET technology is spearheading
the growing significance of this imaging approach in the person-
alization of cancer care. Multiple nuclear probes beyond FDG,
primarily PET tracers discussed in this review, are currently used
against specific biologic targets addressing specific clinical sce-
narios and guiding therapy. Some of these probes are already
approved by the FDA and the European Medicines Agency and are
now recognized as part of the standard of care, such as PSMA for
prostate cancer, somatostatin analogs for NETs, and ®F-FES for
breast cancer (particularly invasive lobular breast cancer). Others,
especially those targeting the TME, such as FAPI and CXCR4 li-
gands, are being investigated and validated by prospective clinical
trials to evaluate their potential and impact on patient

management.
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FIGURE 5 A case of biopsy-proven hepatocellular carcinoma in
which (Left) FDG PET was first performed for evaluation before
biopsy followed by (Right) FAPI PET when results on FDG, MRI, and
CT were inconclusive. FAPI was positive for multifocal liver
involvement (arrow), whereas FDG was not suggestive. CT indicates
computed tomography; FAPI, fibroblast-activating protein inhibitor;
FDG, fluorodeoxyglucose; MRI, magnetic resonance imaging; PET,
positron emission tomography.

Additional ligands with different targets are expected to be
discovered and evaluated. The combination of molecular imaging
with advanced translational techniques, such as single-cell
sequencing, spatial transcriptomics, or proteomics that can uncover
surface-associated and tumor-specific molecular targets, enables the
development of highly specific imaging probes that might even be
adapted to the evolving tumor biology. A recent study by Wang and
colleagues demonstrates the potential of such a data-driven
approach to identify molecular targets.'®* Spatial transcriptomics
and proteomics of human surgical samples from patients with
pancreatic ductal adenocarcinoma were used to select appropriate
targets, which led to the development of a peptide-based molecular
imaging agent for PET imaging of tight junction protein expression.
These developments, in combination with bimodal molecular imaging
probes that are currently under investigation and combine radiola-
bels with fluorescence, are highly promising.*3> To this end, bimodal
molecular agents could be used for concomitant PET imaging, optical
surgical navigation, and targeted radiopharmaceutical therapy,
guiding precision oncology strategies and opening new avenues for
diagnostic and theranostic applications.

Finally, by interrogating various mechanisms involved at the level
of both the cancer cell and the TME, cancer molecular imaging can
also provide insights to improve current understanding of tumor

growth and response to treatment.
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